

DPP - 4

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/42

https://youtu.be/e0X1J1LZBU0

https://physicsaholics.com/note/notesDetalis/36

Q 1. If a bullet of mass 5 gm moving with velocity $100 \mathrm{~m} / \mathrm{sec}$, penetrates the wooden block upto 6 cm . Then the average force imposed by the bullet on the block is
(a) 8300 N
(b) 417 N
(c) 830 N
(d) zero

Q 2. A vehicle of 100 kg is moving with a velocity of $5 \mathrm{~m} / \mathrm{sec}$. To stop it in $\frac{1}{10} \mathrm{sec}$, the required force in opposite direction is:
(a) 5000 N
(b) 500 N
(c) 50 N
(d) 1000 N

Q 3. A block of mass 5 kg is moving horizontally at a speed of $1.5 \mathrm{~m} / \mathrm{s}$. Aperpendicular force of 5 N (in horizontal plane) acts on it for 4 sec . What will be the distance of the block from the point where the force started acting:
(a) 10 m
(b) 8 m
(c) 6 m
(d) 2 m

Q 4. Three equal weights of mass 2 kg each are hanging on a string passing over a fixed pulley as shown in the fig. What is the tension in the string connecting the weights B and C ? $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) zero
(b) 13 N
(c) 303 N
(d) 19.6 N

Q 5. A system of three blocks are connected by strings as shown in figure. Calculate acceleration of each block and tension in the strings: $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

(a) $a=5 \mathrm{~m} / \mathrm{s}^{2}, T_{1}=30 \mathrm{~N}, T_{2}=15 \mathrm{~N}$
(b) $a=5 \mathrm{~m} / \mathrm{s}^{2}, T_{1}=15 \mathrm{~N}, T_{2}=30 \mathrm{~N}$
(c) $a=2.5 \mathrm{~m} / \mathrm{s}^{2}, T_{1}=40 \mathrm{~N}, T_{2}=20 \mathrm{~N}$
(d) $a=2.5 \mathrm{~m} / \mathrm{s}^{2}, T_{1}=20 \mathrm{~N}, T_{2}=40 \mathrm{~N}$

Q 6. Two unequal masses of 1 kg and 2 kg are connected by an inextensible light string passing over a smooth pulley as shown in the figure. A force $F=20 \mathrm{~N}$ is applied on 1 kg block. Find the acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of either block: $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

(a) $\frac{10}{3}$
(c) 10
(b) $\frac{20}{3}$
(d) 20

Q 7. A smoothring P of mass m can slide on a fixed horizontal rod. A string tied to the ring passes over a fixed pulley and carries a block Q of mass ($\mathrm{m} / 2$) as shown in the figure. At an instant, the string between the ring and the pulley makes an angle 60° with the rod. The initial acceleration of the ring is:

(a) $\frac{2 g}{9}$
(b) $\frac{g}{6}$
(c) $\frac{2 g}{6}$
(d) $\frac{g}{3}$

Q 8. Consider the situation shown in figure. Both the pulleys and the string are light and all the surfaces are smooth. Find the tension in the string attached with 1 kg block: $(g=$ $10 \mathrm{~m} / \mathrm{s}^{2}$)

(a) $\frac{20}{3} N$
(b) $\frac{5}{3} N$
(c) $\frac{40}{3} \mathrm{~N}$
(d) $\frac{10}{3} N$

Q 9. Two masses $m_{1}=5 \mathrm{~kg}$ and $m_{2}=10 \mathrm{~kg}$ are connected at the ends of an inextensible string passing over a frictionless pulley as shown. When the masses are released, then the acceleration of the masses will be:
m_{1}
(a) g
(b) $\frac{g}{2}$
$\frac{9}{2}$
(c) $\frac{g}{3}$
(d) $\frac{g}{4}$

Q 10. System is shown in figure. All the surfaces are smooth. Rod is moved by external agent with acceleration $9 \mathrm{~m} / \mathrm{s}^{2}$ vertically downwards. Force exerted on the rod by the wedge will be:

(a) 120 N
(b) 200 N
(c) $\frac{135}{2} N$
(d) $\frac{225}{2} \mathrm{~N}$

Q 11. A person of mass 50 kg stands on a weighing scale on a lift. If the lift is descending with a downward acceleration of $9 \mathrm{~m} / \mathrm{s}^{2}$. what would be the reading of the weighing scale? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) 50 kg
(b) 25 kg
(c) 250 kg
(d) 5 kg

Answer Key

Q. 1	b	Q. 2	a	Q. 3	a	Q. 4	b	Q. 5	a
Q. 6	a	Q. 7	a	Q. 8	d	Q. 9	c	Q.10	b
Q. 11	d								

